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AbstmBeL We describe the construction of regular lattices in two-dimensional hyperbolic 
space by means of lhe anion of a discrete subgroup of S U ( 1 , l ) .  We consider an lsing 
model on such lattice8 and show how the thermodynamic limit can be handled. We 
give high- and low-temperature expansions of the free energy. magnetic susceptibility 
and magnetization and find that these quantities diverge at a critical temperature with 
mean-field expanents B = 112, y = 1.  We also conjecture the long distance behaviour 
of correlation functions at the critical temperature. 

1. Introduction and outline 

It is well known that critical behaviour is determined by only a few properties, most 
notably the dimension of the system and the symmetries of the interaction. Another 
property that might play a role is the curvature of the space in which the system lives. 
In order to investigate this we study the Ising model in a space of uniform negative 
curvature, the Poincark disk. Since the king model in a flat two-dimensional space 
is exactly solvable in many ways, one might hope that one of these methods can be 
generalized to this curved space. 

In order to define an king model we need to have some lattice on which the 
spins live. We want this lattice to be as regular as possible; every site and every 
edge connecting neighbouring sites must be equivalent. Also the lattice must be 
planar, since many methods for solving the Ising model in flat space make explicit 
use of the planarity of the lattice. These requirements restrict the possible lattices. 
In flat space only three possibilities remain: the square, triangular and honeycomb 
lattices. On the Poincare disk there are infinitely many possibilities. We describe the 
construction of these lattices in section 2. In section 3 we consider the lsing model 
on these so-called hyperlattices. We are unable to give an exact solution, hence we 
turn to high- and low-temperature series expansions in section 4. These expansions 
indicate that the magnetization and susceptibility become singular with the classical, 
mean-field exponents p = 1/2 and y = 1, at a critical temperature T,. It is not 
very surprising that the critical exponents take on their mean-ficld values, since a 
counting argument, given in section 2, shows that the effective dimensionality of the 
hyperlattices is infinite. 

A much more surprising result is the value T, for a self-dual lattice; it is 
larger than the self-dual value. This implies that there should he a second critical 
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temperature, dual to Tc, but the low-T expansions of the magnetization and 
susceptibility do not show this singularity. 

Finally, in section 5 ,  we turn to  a continuum description of the critical point. We 
calculate, using techniques from conformal field theory, some correlation functions 
on the Poincar6 disk. 

2. Hyperlattices 

In this section we describe the construction of regular lattices with equilateral faces 
for which every lattice point has the same coordination number. These lattices can he 
embedded in a homogeneous two-dimensional space with constant Ricci curvature. 
When the curvature is positive, this is the sphere S2. After Riemann projection 
z _= z + iy = eiq tan 40 this becomes the plane with metric 

When the curvature R = 0 we simply have the Euclidean plane with metric 

s,,(z,y) = hW”. (2.2) 

When the curvature is negative we may choose the hyperboloid embedded in (2+1)- 
dimensional Minkowski space, given by 

x 2 + y 2 - 2 2 = - ;  2 2 ; .  (2.3) 

This hyperboloid can be parametrized with coordinates $ E [ O ,  as), p E [0,2rr): 

X = f s i n h $ c o s p  Y = ; s i n h + s i n p  Z = f c o s h Q  (2.4) 

z + iy = ei*f tanh$ it becomes the circular disk IzI < 1 with and in terms of z 
metric 

S,”(Z>Y) = 2 6 .  (2.5) 
1 

( 1 - 2 2 )  

The geodesics of this metric are circular arcs (in the flat metric) orthogonal to the 
circle at infinity, IzI = 1. The distance between two points P, and P2 is given by 

One is not restricted to the unit disk; by means of a conformal mapping one can 
transform to another geometry, e.g. by z c i ( l + z ) / (  1- 2) u+iu to the upper-half 
plane { ( u , u ) I u  2 0). 

The lattices can he characterized by two integers, both 2 3: U, the number of 
neighbours of each vertex; and f ,  the number of sides of each face, and denoted as 
(U, f) .  It can be embedded in the sphere, plane or hyperboloid when the quantity 
(U - 2)( f - 2) is smaller than, equal to or larger than four. 
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The five lattices on the sphere correspond to the five platonic solids, e.g. the 
( 3 , 3 )  lattice is a tetrahedron and the ( 5 , 3 )  lattice is an icosahedron. They have a 
finite number of points. 

On the plane there are three infinitely large lattices: triangular ( 6 , 3 ) ,  square 
(4,4) and hexagonal ( 3 , 6 ) ;  and there are many examples of exactly soluble statistical 
mechanical models on these lattices. 

The lattices on the hyperboloid-hyperlatices, for short-also have an infinite 
number of points. An example of a hyperlattice is shown in figure 1. If we define 
a statistical mechanical model on such a lattice we must be very careful in taking 
the thermodynamic limit hecause the thermodynamic limit can he very sensitive to 
boundary conditions. This is the result of the fact that the boundary of a finite section 
of the lattice contains a finite fraction of the points of the entire section, just as in a 
Cayley tree-see e.g. [l]. We discuss this further in the following. 

Flgure 1. An example of a ( 7 , 3 )  hyperlattice. The bonds are drawn along the geodesics. 

We now turn to the construction of the hyperlattices. The description given here 
is for the unit disk, hut it can be easily translated to the hyperboloid or the upper- 
half plane. The main observation is that the ( U ,  f )  lattice has a symmetry group (not 
taking reflection symmetry into account) that is generated by two elements: 

(i) a rotation around a given lattice point over 01 = 27r/v;  
(ii) a rotation around the centre of an adjacent face ovcr p = 27r/ f. 
Here ‘rotation’ and ‘centre’ are defined with respect to the metric (2.5). 
We denote these rotations by a and b respectively and the identity by e. The 

generators obey the relations 

ay = e (2.6) 

bJ = e (2.7) 

(ab)’= e .  (2.8) 
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The group element ab ,  being its own inverse, represents a 180°rotation around the 
centre of an edge. 

The group generated by a and b is a subgroup of the group of isometries of the 
unit disk in the complex plane, the projective group PSU(1,l) 3 SU(l , l ) /{ I , - I} .  
The action of a matrix M E SU( 1 , l )  on a point t is given by 

If M has one fixed point inside the circle, i.e. when lImsl > 111, it represents a rotation 
around that fixed point; the rotation angle p is then given by 2cos(qP/2) = ITrMI. 

Since - M  has the same action on z as M ,  they correspond to the same 
isometry of the unit disk. Such an isometry is therefore represented by two matrices 

A representation p of the symmetry group of the hyperlattice can be easily 
constructed. 'hke for example the origin z = 0 as the given centre of a face and the 
point z = r ( r  E R)  as the given adjacent lattice point. Then b can be represented 

&MESU( l , l ) .  

bY 

(2.10) 

and a by 

(2.12) 

The lattice points are generated by acting with 'words' in a and b on r .  
Equations (2.6)-(2.8) define an equivalence relation between such words. Equivalent 
words, when acting on 7 ,  give the same lattice point, but since a( 7.) = T and a" = e, 
the mapping from equivalence classes of words to lattice points is U to one. 

The equivalence classes of words form a group C( U ,  f) denoted by 

C ( v , f )  = ( a , b ;  a" = b' = ( a b ) ' =  e ) .  (2.13) 

7 gives Er2rP-g ne!ohhnnrc n.e ~ c ~ ~ ~ , s  nf twc e!emeng n 2nd gi nf g(g, f) Y I  I.." e..-- 
onthelat t icewheng2=g,anbam f o r s o m e m , n = O , l ,  . . . ,  U-1,s ince  a " b ( r )  
are the neighbours of r and a"(.) = r. We will connect nearest neighbours by 
directed bonds that carry an arrow. These directed bonds are in 1-1 correspondence 
with the elements of G(u,  f). 

This can be seen as 
follows. The lattice can be divided in layers in a natural way, see figure 2. The 
first layer consists of a single (central) face and the bonds and sites adjacent to it, 
or, alternatively, of the U faces meeting at a (central) site and the bonds and sites 
adjacent to it. The central site itself may be viewed as the zeroth layer. The second 

The hyperlattices are in a sense infinite dimensional. 
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Figure 2. Ihe division in layen for a (4,s) lattice. The sites within the first, second 
and lhird layer are connected by solid bonds, the bonds between ConseCulive layers are 
broken. 

layer consists of those faces that have a site in common with the first layer and the 
bonds and sites adjacent to these faces that do not belong to the first layer. The 
third, fourth, etc layers are formed in a similar way. 

It is easy to derive recursion relations for the number of sites, edges and faces in 
each layer. We give the derivation for the sites, the derivations for the edges and the 
faces can be done in a similar way. We first consider the case f > 4. Within each 
layer the sites can be divided into two classes: the ones that are connected to the 
previous (inner) layer and those that are not. We denote the number of these points 
in the nth layer by I, and E, respectively. The number of points in the nth layer is 
I, + E, and the following recursion relation is satisfied: 

with initial condition I ,  = 0, E, = f (for the 'face-centred' lattice) or I, = U ,  

E, = u(f - 3 )  (for the 'site-centred' lattice). So the number of points in the  nth 
layer grows as 

Ill + E n  x a x  

with 

2 112 
A,,, = f (  f - 2)( U - 2) - 1 + { (f( f - 2)(u - 2) - 1) - I} . (2.15) 

For f = 3 the situation is different; for all layers but the first the points fall into two 
classes: those that are connected to two points of the previous layer and those that 
are connected to only one point of the previous layer. Denoting the number of these 
points by I,, and E,, we find the following recursion relation: 

( E , + , ) = ( u ! 6  I"+I u ! 5 )  ( 2 )  n k 2  (2.16) 
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with initial condition I ,  = 3, Ez = 3u - 12 (for the ‘face-centred’ lattice) or I, = 0, 
E, = U (for the ‘site-centred‘ lattice). So in this case the number of points also grows 
exponentially for the hyperlattices ( u  2 7). 

Thus we see that for a section of the lattice consisting of the first n layers, V,,, the 
number of points on the boundary, laV,l, is proportional to lV,l. For an ‘ordinary’ 
lattice in d dimensions the relation is laV, 1 - lVnl’-’’d and therefore it is natural to 
take d = M for the hyperlattices. In this sense the hyperlattices are similar to Cayley 
trees, where a finite fraction of the points also lies on the boundary. The Cayley trees 
may be viewed as f = 00 hyperlattices. 

3. The Ising model on hyperlattices 

The Ishg model on these byperlattices has been considered by previous authors [2, 31. 
The main theorem of [3] is that for low temperatures there exist uncountably many 
Gibbs states. These Gibbs states are characterized by a geodesic and the condition 
that the boundary spins have the value + I  on one side of the geodesic and -1 on 
the other. Again this is reminiscent of the situation on the Cayley tree, since there 
the translation symmetry can be broken by k ing  the boundary spins to be +1 on 
one side of a line joining two points on the boundary and -1 on the other side. 

We will first consider the king model at high temperatures on a finite section of 
the lattice with free boundary conditions. The Hamiltonian is 

- P X ( { s ) ) =  liCSiSj + N C S i  
i 

and, using standard arguments, the partition function for zero magnetic field can be 
rewritten as a sum over all possible configurations of diagrams with all vertices of 
even degree embedded in the lattice 

Zfree(u, f, I<)  = x e - a n ( { r ) )  = 2“(cosh ( tanhI<)L (3.2) 
( a )  diagrams 

where N, is the number of sites, Ne is the number of edges and L is the total number 
of edges occupied by the diagrams. The diagram summation starts as follows 

( tanhlC)L= l + N , ( t a n h I i ) f  +N,-,(tanhli)*’-’+...  (3.3) 
diagrams 

where N, and NI-, are the number of f-gons and the number of pairs of f -  
gons joined by a common edge. For flat lattices, where the fraction of sites near 
the boundary goes to zero for large sections, the number of edges, sites, f-gons, 
etc, is proportional to the number of sites, and the ConstanCS of proportionality are 
independent of the precise choice of the sections. (For example for the square lattice 
N,/N, + 2, NJN, + 1, independently of details such as the ratio heighth’idth of 
the sections and whether or not there are ‘dangling bonds’ at the boundary.) There 
is no such property for the hyperlattices because of the finite fraction of Sites at 
the boundary, so, strictly speaking, the thermodynamic limit of the free energy does 
not exist for these lattices. Similar remarks apply to the graphical expansions Of 
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other thermodynamic quantities. One might, however, choose only sections of the 
hyperlattice such that all ratios N J N , ,  N r / N s  etc, go to constant values as N ,  - M, 

and obtain a 'restricted' thermodynamic limit, which depends on the treatment of the 
boundary. 

It is possible, as in Euclidean space, to impose periodic boundary conditions, by 
identifying the boundaries of a finite lattice. Finite periodic hyperlattices are then 
embedded in a Riemann surface, of a genus proportional to the total area. In such 
a construction the ratios N J N ,  and N , / N ,  are independent of the size of the 
lattice and take the bulk values. However, we have not been able to give a general 
construction of arbitrarily large lattices with periodic boundary conditions. 

We shall follow a slightly different route; we define a bulk free energy by means 
of the previous expansion and by assigning to all ratios N / N ,  that occur the value 
they would have if all sites were internal (i.e. far enough away from the boundary). 
So we take the view that all sites of our lattice are equivalent. In this sense the 
thermodynamic functions we define represent local bulk properties in a region far 
removed from the boundaries. So, for example, the ratio N e / &  is set equal to v / 2 ,  
since all internal sites are connected to U neighbours and every edge connects two 
sites. 

All differences between this hulk free energy and the free energy in a restricted 
thermodynamic limit can be attributed to the boundary. For instance, on a Cayley 
tree Ne = N ,  - 1, independent of the coordination number U, so the free energy per 
site is 

- Pfcaylq- = log 2 + logcosh li (3.4) 

whereas the bulk free energy per site, as defined above, is given by 

- Pfbult, = log2 + + U  logcosh li. (3.5) 

The difference between f and fbulr is the boundary free energy. 
The free energy thus defined can he rewritten in a form tha t  reflects the 

lattice structure by means of a matrix W, first introduced for the square lattice 
by Vdovichenko (41: 

The rows and columns of W are labelled by the directed bonds of the  lattice. The 
matrix W generates the steps from one directed bond to another that a random 
walker can make and it assigns a factor (-1)'+" to a loop with 7% self-intersections, 
For the three 'flat' lattices the right-hand side of (3.5) can be evaluated directly, 
using the translation invariance of these lattices. 

As noted in t h e  previous section, there is a one-to-one correspondence between 
directed bonds and the elements of the group G(v,f), once a particular edge is 
chosen as the identity e. Choosing e relative to the rotations U and b as in figure 3, a 
random walker, who is at the directed bond labelled by g at time t and takes one step 
per unit of time, is at one of the U-1 directed bonds labelled by y u 2 b , g a 3 b , .  . . , p u b  
at time t + 1 since the edges that can be reached from e are u2b,  u3b,  ..., u"b, as 
shown in figure 3. When g is is near the boundary of the section, the walker can 
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Figure 3. The directed bonds that can be reached 
from e on a (5 ,4 )  hyperlattice. They correspond 
to the group elements a2b, a'b, 0 4 b  and a'b = b ,  
in counterclockwise order. 

reach fewer bonds, but we can ignore this complication for the calculation of the bulk 
free energy. 

The matrix W acts on a vector space V (  v ,  f) spanned by basis vectors labelled 
by the group elements of C( v ,  f). We define an inner product such that these basis 
vectors are orthonormal: 

We then define linear operaton A and B on V (  U ,  f) with the properties 

(gljAijg2j = 0 

(gllBlg2j = 0 

uniess g2 = gla 

unless g2 = s l b  
A" = -1 

Bf = - 1  

  AB)^ = -1 .  

In terms of these operators W is given by 

W = -A2B - A3B - . . . - A V E .  

(3.7) 

(3.Q 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

There is some freedom in the choice Of minus signs in these formulae, but this is 
the simplest choice (in that the signs do not depend on v or f). That W as defined 
earlier gives evety loop the correct sign (-1)'f" can be shown by induction; first one 
checks that the loops that surround a single face get the correct sign ( - l ) ,  then one 
checks that the sign remains correct if a loop is enlarged by surrounding one more 
face. 

If S is any word in the letters A and E ,  then 

i f S = 1  
i f s = - ]  
otherwise. 

so on expanding the logarithm in (3.6) and taking the trace one gets 

(3.14) 
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where nc(-+l) is the number of words consisting of ! syllables from the set {A'B, 
A'B,. . . , A" B) that are equal to 51. 

This result is very nice, but unfortunately it is not very useful for actually 
computing the free energy, since the word problem for the group 

- 
G(u ,  f )  = (A ,  B; A" = B' = (AB)' = -1) 

is too difficult. Furthermore, other thermodynamic quantities, such as the 
susceptibility, do not have such a nice representation in terms of the group ??(U, f). 
So for practical purposes it is better to enumerate the graphs directly. 

A similar word problem for the modular group can be solved. This allowed Lund 
ef a1 [SI to obtain the free energy for the Ising model on the corresponding lattice, 
which ah0 has a natural embedding in the hyperplane. 

At this point it is necessary to make a remark about duality and the free energy 
expansion at low temperature. The standard Kramers-Mnnier duality is established 
by noting that the diagrams in the high-T expansion correspond to contom that 
separate regions of up and down spins in a low-T expansion of an king model on 
the dual lattice, at the dual temperature given by 

- 
eCZK = tanh Ii-. (3.16) 

The dual lattice is obtained by first removing all dangling bonds at the boundary of 
the original lattice (these bonds cannot be part of a diagram), then  putting dual sites 
at all faces of the amputated lattice, including the external face 'at infinity', and finally 
joining the dual sites at adjacent faces by dual bonds. Every edge of the amputated 
lattice is crossed by precisely one dual bond. In order to embed this dual lattice in 
a hyperlattice with (G ,? )  = (f, U )  one replaces the dual site at infinity by as many 
sites as there are edges at the boundary of the amputated original lattice. These sites 
are the boundary sites of the new dual lattice. 

The partition function for the Ising model with coupling constant K- in zero field 
on this dual lattice, with the boundary condition that all spins at  the boundary are 
fixed at the same value is given by 

(3.17) 
C O " I 0 Y n  

Using (3.16), the sum over contours becomes identical to the sum over diagrams in 
(3.2). This allows us to define a bulk free energy per site on a (f, U )  lattice for futed 
boundary conditions in terms of the bulk free energy per site on a (71, f) lattice with 
free boundary conditions: 

For the square lattice f = U = 4 and one can show that the bulk free energy is 
independent of the boundary conditions. In that case (3.18) implies that if th&e is 
only one critical temperature, it should be at the value for which Kc = Kc,  i.e. 
at ICc = lis,,f-d,,, = f log( 1 + h). However, for hyperlattices there is no reason 
to assume that fhred = fr,,, and hence one cannot conclude that for lattices with 
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f = v 2 5 there is a critical point at It' = l i ~ l , - d u a l .  But one can conclude from 
(3.18) the following relation between the critical temperatures of the king model with 
free and with k e d  boundaries: 

tanh I i ,  j) = e- ZK, 4 f j u ) ,  (3.19) 

In the next section this relation is tested by means of exact series expansions of 
the magnetic susceptibility (high 7') and magnetization (low 7') for a self-dual (5.5) 
lattice. 

4. Series expansions 

In this section we investigate the Ising model on the ( v , f )  = ( 7 , 3 )  and ( 5 , 5 )  
hyperlattices by the method of exact series expansions [6!. This approach has been 
highly successful in the past for the standard lattices and there is no difficulty in 
extending the method to the present cases. 

High-temperature expansions for the bulk free energy and zero-field susceptibility 
(with free boundary conditions) can be developed in the form 

V 
- p A,, = log2 + 7 log cosh li + 

Xfree = 1 + bn 32" (4.2) 

anzn (4.1) - n 

and 

n 

where 2 = tanh li. The coefficients a,, bn are sums of the embedding factors for 
certain classes of diagrams on the lattice; a,, results from diagrams with n edges and 
all vertices of even degree, while bn results from diagrams with n edges and exactly 
two vertices of odd degree. In practice it is possible to eliminate the disconnected 
diagrams [7] and we have used this approach here. In table 1 we give the expansion 
coefficients for the free energy (to 14 terms) and for the susceptibility (to 11 terms) 
for the two lattices. As is usual for high-T series the susceptibility series is quite 
mn..lnr nmnln~ln tn o..rrr.rfi.l nn~l.rr;r .lih;lp the fP-0 ~ n e r m ,  m e + E r ; m n t r  nre 
.C&",.I, .I,," ~,,,L,,,.I",I L" D"CcC~U," ,  .I,,",,'..,, .,..L.l L.... ..ll ......,E, .."...,..L....IU Y... 

much more erratic. This is particularly true for the ( 5 , s )  lattice. 
It is also useful to develop series which converge at low temperature. This consists 

of enumerating low-energy configurations perturbed from the ferromagnetic ground 
state, corresponding to fixed boundary conditions, and gives an expansion of the form 

(4.3) 

where H is an applied magnetic field and the variables U and p are given by 

U = e- 2K ~ = e-ZH, 

From this result we obtain expressions for the magnetization and low-temperature 
susceptibility in the form 

(4.4) 
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Table 1. Coefficienls at lhe high lemperature series far the free energy and susceplibility 
expansions for Ihe (7,3) and the ( 5 , s )  lattices. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0 
0 
24 
3; 

l l f  

43 a 
948 

206 f 

1 0 5 1 ~  

7 

22 

462 

2429 
5670; 

7 
42 

238 
I316 
7196 

39 144 
212394 

1150968 
6233150 

33745698 
182669074 

0 
0 
0 
0 
1 
0 
0 

0 
-3 
10 
0 

- 25 
50 

2; 

5 
20 
80 

320 
1270 
5040 

20010 
19 400 

315060 
I250260 
4961 180 

'Eihle 2 gives the coefficients of these two series for the (7 ,3)  and ( 5 , s )  lattices. 
As is evident the low-T series, while longer, are considerably more erratic than the 
high-T series-again a well known feature. 

We now turn to the  analysis, using the standard procedure of ratio plots and Pad6 
approximants [SI. If a function f( x) has an algebraic singularity of the form 

f( x) - A( xc - x)-? (4.6) 

then the ratio of successive coefficients has the form 

(4.7) 

Hence a 'ratio plot' of T, against 1/n should, for large enough 'n, become linear 
with intercept 1/x, and slope (y - l) /zc.  

In figure 4 we show such a plot for the high-T susceptibility series for the 
(7,3) lattice. Tho things are clear. First the points lie on a smooth curve and 
an extrapolation to 1/n = 0 is clearly possible with a fair degree or confidence. 
Second the plot has a definite residual curvature unlike the ratio plots for regular 
lattices. This is an indication that the exponent y = 1, for then the linear term 
in (4.7) vanishes. This suggests a plot of v,, against l /n2,  which is also shown in 
figure 4. The curvature is reduced, hut not eliminated, suggesting tha t  higher order 
terms are still important. A more sophisticated analysis can be performed, hut these 
results are consistent with a critical point 

xc = 0.1848 li, = 0.1870 

and an exponent y = 1.0. 

available coefficients of the series are represented by a ratio of polynomials 
The other major approach is the method of Pad6 approximants, in which the 
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Table 2. Coefficients of the low-temperature series for the magnetization and susceptibility 
expansions for the (7,3) and the ( 5 , 5 )  lattices. 

I 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 -2 
8 0 
9 0 

10 0 
I1 0 
12 - 14 
13 0 
14 I6 
15 -14 
16 0 
17 -84 
18 -28 
19 252 
20 -168 
21 -226 
22 -224 
23 -420 
24 2450 
25 -910 
26 -5068 
27 2072 
28 -1288 
29 15722 
30 1176 

0 
0 
0 
0 
0 
0 
4 
0 
0 
0 
0 

56 
0 

-64 
84 
0 

504 
224 

-1512 
1344 
I636 
1792 
4202 

-18816 
91w 

45 248 
-18368 

22 192 
-143 108 

-7168 

0 
0 
0 
0 

-2 
0 
0 

-10 
0 

12 
-60 

0 
150 

-400 
-102 
1530 

-2800 
-21w 
14600 

- I9 260 
-30260 
134660 

-121310 
-375 130 
1207682 
-596000 

-4276880 
10497 200 
-483660 

-46 125332 

0 
0 
0 
0 
4 
0 
0 

40 
0 

-48 
360 

0 
-900 
3200 
652 

-12240 
28000 
17520 

-146000 
234288 
311840 

-1 615760 
1792 140 
4604279 

- 16 932396 
I1 319680 
60 930 040 

-169 004000 
36 375 480 

748541 168 

and singularities in f(z) correspond to zeros of the denominator polynomial Q,(z) 
with the residues providing estimates of the exponents. It may be desirable or 
necessary first to apply transformations to the function, for example by taking the  
logarithmic derivative [SI. We have carried out such an analysis for the high-T 
susceptibility series for the (7 ,3)  lattice, with the result that there is a critical point 
at zc = 0.1848, consistent with the ratio analysis, and that near zc zfree(z) has the 
approximate representation 

Estimated errors are f l  in the last significant digit. 
Analysis of the low-T magnetization series for the (7 ,3)  lattice, by means of Pad6 

approximants to the logarithmic derivative series, provide estimates for the critical 
point uc and the magnetization exponent 0. Some of the raw data are shown in 
table 3. We conclude that uC = 0.689 5 0.001 and that fl  rz 0.58, although there 
is a fair degree of uncertainty in the latter result. Note that uc = 0.689 gives 
zc = 0.184 and conversely zc = 0.1848 gives uc = 0.688. Thus the critical point 
estimates from high- and low-T series are quite consistent with each other. The 
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11 10 9 6 7 high-tempetature susceptibility mpansion on the 

l ln  (7,3) lattice. 

susceptibility exponent appears to be exactly 1, the classical mean-field value and the 
value which occurs for infinite effective dimensionality. The corresponding mean-field 
magnetization exponent would be 1/2, and our estimate is consistent with this. 

Table I Estimala of the aitical point uc and exponent 
lhe series for d/du log M - ( u ) ,  for the (7,3) and (5, 5) lattices. 

from Pad6 approximanls to 

(7,3) ( 5 3  

ILIMI u s  P 
[13/16] 0.68998 0.583 
[14/15l 0.68993 0.582 
[IS/l4] 0.68995 0.582 
[16/13] 0.68881 0.538 
[13/15] 0.689f6 0.570 
[14/14] 0.69007 0.587 
115/131 0.68862 0.532 

UC P 
0.597 73 0.508 
0.597 70 0.507 
0.59767 0.506 
0.59770 0.507 
0.5976 0.506 
0.59767 0.506 
0.59767 0.506 

We have analysed the series for the ( 5 , 5 )  lattice in a similar way. The coefficients 
of the high-T susceptibility series are somewhat more erratic than for the (7,3) 
lattice. This is consistent with the behaviour found for the usual regular lattices, 
where higher coordination number generally gives more regular series. The last five 
ratios w ,  are 3.9702, 3.9680, 3.9680, 3.9683, 3.9681. This suggests that zc = 0.2520 
and y = 1, again the mean field or infinite-dimensional exponent. Pad6 approximants 
to the series for xbepe(z) and the logarithmic derivative series are consistent with these 
values and suggest the approximate representation near zc = 0.2520 

xbee(z) = O.325(zc - z ) - ' . ~  - 0.356 (4.9) 

where again the estimated errors are &1 in the last digits. 
Analysis of the low-T magnetization series for the (5J) lattice by Pad6 

approximants gives the results shown in table 3, from which we estimate that 
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tie = 0.5977+0.0001 and p e 0.51. This value of U, gives z - 0.2518 and conversely 
the value zc = 0.2520 gives uc = 0.5954. Again the critical point estimates from 
high- and low-T series are fully consistent with each other and indicate that the 
critical exponents have the infinite-dimensional values y = 1, p = 1/2. 

The results for the ( 5 , 5 )  lattice are totally unexpected. On the basis of the 
discussion following (3.18) one would expect that the critical temperatures for the 
system with bee boundary conditions and the system with fixed boundary conditions 
may well be different but should be related by (3.19). We find something completely 
different; the critical temperatures are the Same for the two boundary conditions 
(with T, larger than Tse,f.dua,) and the low-T expansion shows no sign of a second 
critical point at the dual temperature! This is indeed a very strange and unexpected 
phenomenon. Since the low-T expansions of few,, M,, and xhd are all based 
on the Same diagrams they presumably all have the same critical temperature Tc, 
which happens to be larger than Tself.dual. This implies that the high-T expansion of 
ffme has a critical temperature Tc < Tylf-dua,. On the other hand we found that the 
low-T expansions are regular at Tc, so the high-T expansion of ffree must be regular 
at T,. However, in the high-T expansion of which is based on a different set of 
diagrams, we do find a singularity at T,! This shows that the critical temperatures are 
independent of the boundary conditions, but do not show up in all thermodynamic 
functions. 

F -  

5. Correlation functions at criticality 

In the previous section it was found that the susceptibility and the magnetization 
diverge at a critical temperature. It seems natural that at this critical temperature 
the Ising model can be described by means of a conformal field theoly on the 
hyperplane. Correlation functions in this conformal field theory can be derived from 
the corresponding correlation functions in a semi-infinite geometry without curvature 
by a small extension of the techniques described in [9]. That is done in this section. 

Consider a primary field @ in conformal field theory. Under a conformal 
coordinate transformation z Y w = f (  z )  the line element becomes 

ds 2 = dzdi = / f l ( r ) / - 2 b w d . G  g.:j 
and the field transforms as follows 

( 5 4  
-A -, - -A @(w,$) = f ' (z)  f ( z )  @(z,i). 

If we view this mapping as an active mapping between two different geometries with 

of primary fields in these geometries: 
limn n lnmont~ A.2 - A - A ;  3 n A  A - 2  - A.. . r l . i .  \w r -n rnlnte +he rnrrditinn hinrtinnc 
...E I I,L.L.."..LI "1, - Y e " *  "..U U Y 2  - " W Y W  ..I WI. ....."LV I.." _.."."..Y.. ._..-..-..- 

( @ I ( Z l >  2,) " , @ n ( z n . i n ) ) l  
" 

(5.3) A .  -, - 
= n f ' ( Z j )  ' f  ' ( @ l ( w l , L 4 ) .  , . @ n ( w " , q % ) ) 2 .  

j = 1  

The line elements of the hyperplane and a (flat) disk are related by resealing: 

(5.4) 2 2 2  2 
dsdish = ( l  - ' dShyperplrne. 
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There is, however, no holomorphic function f( z )  such that 
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but we do not expect that primary fields for which the two conformal dimensions A 
and d are equal can distinguish between rescalings of the metric which are caused 
by holomorphic coordinate transformations and those which are not. 

Therefore we conjecture that the 'critical' correlation functions of spinless (i.e. 
A = A)  primary fields with scaling dimensions z, = Aj  + Aj are 

n 

(@l(Pl) , . . Qn (Pn ))byperplane = n ( 1 - +"' . (Q1( Pl) . . , Qn( pn ))disk . (5.6) 
j = 1  

This formula will also hold on the hyperlattices if the separations between the points 
Pl,. . . , P, are large. 

The correlation functions on the disk can be obtained using standard techniques 
from conformal field theory [9]. It is convenient to calculate the correlation functions 
first in the upper-half plane Imw > 0 and then transform to the disk via 

w - i  
w + i  

w c * = -  (5.7) 

For a one-point function with fixed boundary conditions we have on the upper-half 
plane 

(Q(w, *))""p = Iw - GI-= (5.8) 

hence 

= ( 1  - 7 - y .  (5.9) 

Using (5.6) we thus find that the one-point function on the hyperplane is a constant: 

( Q ( Z >  i))hypcrplane = 1. (5.10) 

As a second example we consider the spin-spin correlation function in the Ising 
model. From [9] we find that on the upper-half plane 

with 

(5.12) 
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and 

(5.13) 

in terms of the distance d = d( PI,  P2) between the two points in the hyperbolic 
geometly. The upper sign is for free boundary conditions, the lower for uniformly 
k e d  boundary conditions. 'Itansfarming to the hyperplane we find 

(5.14) 

From this result we conclude that the correlation function decays exponentially to its 
asymptotic value: 

where the correlation length is < = 1 for free boundary conditions and ( = 114 for 
fixed boundary conditions. So even for a massless field the correlations do not have 
infinite range. This is related to the fact that the spectrum of the Laplacian on the 
hyperplane has an upper bound of -1 (in our normalization of the metric), whereas 
the upper bound is zero on the plane; the negative curvature introduces a scale into 
the problem. 

Acknowledgments 

Part of this work was financially supported by the Stichting voor Fundamenteel 
Onderzoek der Materie (FOM). 

References 

[l] Thompson C J 1982 1. Stat Phys 27 441 
[2] Saito K 1989 king models on Fuchsia" groups Preprim RIMS 
[3] Series C M and Sinai Ya 0 1990 Commun Moth. Phys. 128 63-76 
[4] Vdovichenko 1965 Sou Phys.-JETP 20 477 

Landau L D and Lifshitz E M A 1980 Course of Theoretical Physics, r.01 5 Slorisricol Physics 3rd 

[5] Lund F, Rasetli M and Regge T 1976 Commun. Mark Phys. 51 15 
{Si Donib C i8i4 Phirare Tronriiiorrr and Critical Phmornena wi i, ed C Comb and ivi S Green jiiew 

[7] Oitmaa J 1981 Can. 1. Ph.ys. 59 IS 
Oilmaa J and Velgakis M J 1986 1. Phys. A: Math. Gert. 19 1553 

[SI Gutlmann A J 1989 Phose Tronsiriom ond Criricnl Phenoineiin vol 13, ed C Domb and J Lebowilz 

[9] L Cardy 1987 Phase Tramitions and Criricol Pherromeno voI 11, ed C Domb and 1 Lebawilz (New 

edn, pan 1 (Oxford Pergamon) 

York Academic) p 357 

(New York Academic) p 1 

York Academic) p 55 


